
Direct Solvers for Sparse Matrices
X. Li June 2020

Direct solvers for sparse matrices involve much more complicated algorithms than for dense matri-
ces. The main complication is due to the need for efficient handling the fill-in in the factors L and
U . A typical sparse solver consists of four distinct steps as opposed to two in the dense case:

1. An ordering step that reorders the rows and columns such that the factors suffer little fill, or
that the matrix has special structure such as block triangular form.

2. An analysis step or symbolic factorization that determines the nonzero structures of the
factors and create suitable data structures for the factors.

3. Numerical factorization that computes the L and U factors.

4. A solve step that performs forward and back substitution using the factors.

There is a vast variety of algorithms associated with each step. The review papers by Duff [17]
(see also [16, Chapter 6]) and Heath et al. [28] can serve as excellent reference of various algorithms.
Usually steps 1 and 2 involve only the graphs of the matrices, and hence only integer operations.
Steps 3 and 4 involve floating-point operations. Step 3 is usually the most time-consuming part,
whereas step 4 is about an order of magnitude faster. The algorithm used in step 1 is quite
independent of that used in step 3. But the algorithm in step 2 is often closely related to that of
step 3. In a solver for the simplest systems, i.e., symmetric and positive definite systems, the four
steps can be well separated. For the most general unsymmetric systems, the solver may combine
steps 2 and 3 (e.g. SuperLU) or even combine steps 1, 2 and 3 (e.g. UMFPACK) so that the
numerical values also play a role in determining the elimination order.

In the past 10 years, many new algorithms and software have emerged which exploit new
architectural features, such as memory hierarchy and parallelism. In Table 1, we compose a rather
comprehensive list of sparse direct solvers. It is most convenient to organize the software in three
categories: the software for serial machines, the software for SMPs, and the software for distributed
memory parallel machines.

Fair to say, there is no single algorithm or software that is best for all types of linear systems.
Some software is targeted for special matrices such as symmetric and positive definite, some is
targeted for the most general cases. This is reflected in column 3 of the table, “Scope”. Even for
the same scope, the software may decide to use a particular algorithm or implementation technique,
which is better for certain applications but not for others. In column 2, “Technique”, we give a high
level algorithmic description. For a review of the distinctions between left-looking, right-looking,
and multifrontal and their implications on performance, we refer the reader to the papers by Heath
et al. [28] and Rothberg [35]. Sometimes the best (or only) software is not in public domain, but
available commercially or in research prototypes. This is reflected this in column 4, “Contact”,
which could be the name of a company, or the name of the author of the research code.

In the context of shift-and-invert spectral transformation for eigensystem analysis, we need to
factorize A−σI, where A is fixed. Therefore, the nonzero structure of A−σI is fixed. Furthermore,
for the same shift σ, it is common to solve many systems with the same matrix and different right-
hand sides. (in which case the solve cost can be comparable to factorization cost.) It is reasonable
to spend a little more time in steps 1 and 2 but speed up steps 3 and 4. That is, one can try
different ordering schemes and estimate the costs of numerical factorization and solution based on
symbolic factorization, and use the best ordering. For instance, in computing the SVD, one has

1



Code Technique Scope Contact

Serial platforms

CHOLMOD Left-looking SPD Davis [8]
GLU3.0 Left-looking Unsym, GPU Peng [10]
KLU Left-looking Unsym Davis [9]
MA57 Multifrontal Sym HSL [20]
MA41 Multifrontal Sym-pat HSL [1]
MA42 Frontal Unsym HSL [21]
MA67 Multifrontal Sym HSL [18]
MA48 Right-looking Unsym HSL [19]
Oblio Left/right/Multifr. sym, Out-core Dobrian [15]
SPARSE Right-looking Unsym Kundert [30]
SPARSPAK Left-looking SPD, Unsym, QR George et al. [23]
SPOOLES Left-looking Sym, Sym-pat, QR Ashcraft [5]
SuperLLT Left-looking SPD Ng [33]
SuperLU Left-looking Unsym Li [13]
UMFPACK Multifrontal Unsym Davis [11]

Shared memory parallel machines

BCSLIB-EXT Multifrontal Sym, Unsym, QR Ashcraft et al. [6]
Cholesky Left-looking SPD Rothberg [37]
MF2 Multifrontal Sym, Sym-pat, Out-core, GPU Lucas [32]
MA41 Multifrontal Sym-pat HSL [4]
MA49 Multifrontal QR HSL [3]
PanelLLT Left-looking SPD Ng [26]
PARASPAR Right-looking Unsym Zlatev [39]
PARDISO Left-Right looking Sym-pat Schenk [36]
SPOOLES Left-looking Sym, Sym-pat Ashcraft [5]
SuiteSparseQR Multifrontal Rank-revealing QR Davis [12]
SuperLU MT Left-looking Unsym Li [14]
TAUCS Left/Multifr. Sym, Unsym, Out-core Toledo [7]
WSMP Multifrontal SPD, Unsym Gupta [27]

Distributed memory parallel machines

Clique Multifrontal Sym (no pivoting) Poulson [34]
MF2 Multifrontal Sym, Sym-pat, Out-core, GPU Lucas [32]
DSCPACK Multifrontal SPD Raghavan [29]
MUMPS Multifrontal Sym, Sym-pat Amestoy [2]
PaStiX Left-Right looking SPD, Sym, Sym-pat Ramet [24]
PSPASES Multifrontal SPD Gupta [25]
SPOOLES Left-looking Sym, Sym-pat, QR Ashcraft [5]
SuperLU DIST Right-looking Unsym, GPU Li [31]
symPACK Left-Right looking SPD Jacquelin [38]
S+ Right-looking† Unsym Yang [22]
WSMP Multifrontal SPD, Unsym Gupta [27]

Table 1: Software to solve sparse linear systems using direct methods.
† Uses QR storage to statically accommodate any LU fill-in

Abbreviations used in the table:

SPD = symmetric and positive definite

Sym = symmetric and may be indefinite

Sym-pat = symmetric nonzero pattern but unsymmetric values

Unsym = unsymmetric

HSL = Harwell Subroutine Library: http://www.cse.clrc.ac.uk/Activity/HSL

2



the choice between shift-and-invert on AA∗, A∗A, and

[
0 A
A∗ 0

]
, all of which can have rather

different factorization costs.
Some solvers have the ordering schemes built in, but others do not. It is also possible that

the built-in ordering schemes are not the best for the target applications. It is sometimes better to
substitute an external ordering scheme for the built-in one. Many solvers provide well-defined inter-
faces so that the user can make this substitution easily. One should read the solver documentation
to see how to do this, as well as to find out the recommended ordering methods.

References

[1] P. R. Amestoy and I. S. Duff. Vectorization of a multiprocessor multifrontal code. Int. J. of
Supercomputer Applics., 3:41–59, 1989.

[2] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster. A fully asynchronous multifrontal
solver using distributed dynamic scheduling. SIAM Journal on Matrix Analysis and Applica-
tions, 23(1):15–41, 2001.

[3] P. R. Amestoy, I. S. Duff, and C. Puglisi. Multifrontal QR factorization in a multiprocessor
environment. Numer. Linear Algebra Appl., 3(4):275–300, 1996.

[4] Patrick R. Amestoy and Iain S. Duff. Memory management issues in sparse multifrontal
methods on multiprocessors. Int. J. Supercomputer Applics, 7:64–82, 1993.

[5] C. Ashcraft and R. Grimes. SPOOLES: An object-oriented sparse matrix library. In Proceed-
ings of the Ninth SIAM Conference on Parallel Processing, 1999. (http://www.netlib.org/
linalg/spooles).

[6] BASLIB-EXT: Sparse matrix software. http://www.boeing.com/phantom/bcslib-ext/.

[7] D. Chen, V. Rotkin, and S. Toledo. TAUCS: A Library of Sparse Linear Solvers, Tel-Aviv
Univesity. (http://www.tau.ac.il/~stoledo/taucs/).

[8] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam. Algorithm 887: CHOLMOD,
supernodal sparse Cholesky factorization and update/downdate. ACM Trans. Mathematical
Software, 35(3), 2009. (http://www.cise.ufl.edu/research/sparse/cholmod/).

[9] T. A. Davis and E. Palamadai Natarajan, Algorithm 907: KLU, A Direct Sparse Solver for
Circuit Simulation Problems, ACM Trans. Mathematical Software, 37(3), Article 36, 2011.
(http://www.cise.ufl.edu/research/sparse/klu/).

[10] S. Peng and S. X.-D. Tan, GLU3.0: Fast GPU-based Parallel Sparse LU Factorization for
Circuit Simulation, 2020. https://arxiv.org/abs/1908.00204v3.

[11] T. A. Davis. Algorithm 832: UMFPACK V4.3, an unsymmetric-pattern multifrontal method
with a column pre-ordering strategy. ACM Trans. Mathematical Software, 30(2):196–199, June
2004. (http://www.cise.ufl.edu/research/sparse/umfpack/).

[12] T. A. Davis. Multifrontal multithreaded rank-revealing sparse QR factorization. submitted to
ACM Trans. Mathematical Software, 2009. (http://www.cise.ufl.edu/research/sparse/
SPQR/).

3



[13] James W. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xiaoye S. Li, and Joseph W. H. Liu.
A supernodal approach to sparse partial pivoting. SIAM J. Matrix Anal. Appl., 20(3):720–755,
1999. (http://crd.lbl.gov/~xiaoye/SuperLU).

[14] James W. Demmel, John R. Gilbert, and Xiaoye S. Li. An asynchronous parallel supernodal
algorithm for sparse Gaussian elimination. SIAM J. Matrix Anal. Appl., 20(4):915–952, 1999.
(http://crd.lbl.gov/~xiaoye/SuperLU).

[15] F. Dobrian and A. Pothen. Oblio: a sparse direct solver library for serial and parallel compu-
tations. Technical report, Old Dominion University, 2000.

[16] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der Vorst. Numerical Linear Algebra
for High-Performance Computers. SIAM, Philadelphia, PA, 1998.

[17] Iain S. Duff. Direct methods. Technical Report RAL-98-054, Rutherford Appleton Laboratory,
1998.

[18] I.S Duff and J. K. Reid. MA47, a Fortran code for direct solution of indefinite sparse symmetric
linear systems. Technical Report RAL-95-001, Rutherford Appleton Laboratory, 1995.

[19] I.S Duff and J. K. Reid. The design of MA48, a code for the direct solution of sparse unsym-
metric linear systems of equations. ACM Trans. Math. Software, 22:187–226, 1996.

[20] I.S Duff and J.K Reid. The multifrontal solution of indefinite sparse symmetric linear equations.
ACM Transactions on Mathematical Software, 9(3):302–325, September 1983.

[21] I.S Duff and J. A. Scott. The design of a new frontal code for solving sparse unsymmetric
systems. ACM Trans. Math. Software, 22(1):30–45, 1996.

[22] Cong Fu, Xiangmin Jiao, and Tao Yang. Efficient sparse LU factorization with partial pivoting
on distributed memory architectures. IEEE Trans. Parallel and Distributed Systems, 9(2):109–
125, 1998. (http://www.cs.ucsb.edu/research/S+).

[23] A. George and J. Liu. Computer Solution of Large Sparse Positive Definite Systems. Prentice-
Hall Inc., Englewood Cliffs, New Jersey, 1981. (jageorge@sparse1.uwaterloo.ca).

[24] A. Casadei, M. Faverge, X. Lacoste, and P. Ramet. Parallel Sparse matriX package, LaBRI,
Université Bordeaux I, Talence, France. (http://pastix.gforge.inria.fr/).

[25] A. Gupta, G. Karypis, and V. Kumar. Highly scalable parallel algorithms for sparse matrix
factorization. IEEE Trans. Parallel and Distributed Systems, 8:502–520, 1997. (http://www.
cs.umn.edu/~mjoshi/pspases).

[26] A. Gupta, E. Rothberg, E. Ng, and B. W. Peyton. Parallel sparse Cholesky factorization
algorithms for shared-memory multiprocessor systems. In R. Vichnevetsky, D. Knight, and
G. Richter, editors, Advances in Computer Methods for Partial Differential Equations–VII,
pages 622–628. IMACS, 1992. (egng@lbl.gov).

[27] Anshul Gupta. WSMP: Watson Sparse Matrix Package. IBM T.J. Watson Research Center,
Yorktown Heights. (http://www-users.cs.umn.edu/~agupta/wsmp.html).

[28] M. Heath, E. Ng, and B. Peyton. Parallel algorithms for sparse linear systems. SIAM Review,
33:420–460, 1991.

4



[29] Michael T. Heath and Padma Raghavan. Performance of a fully parallel sparse solver. Int. J.
Supercomputer Applications, 11(1):49–64, 1997. http://www.cse.psu.edu/~raghavan.

[30] Kenneth Kundert. Sparse matrix techniques. In Albert Ruehli, editor, Circuit Analysis,
Simulation and Design. North-Holland, 1986. (http://www.netlib.org/sparse).

[31] Xiaoye S. Li and James W. Demmel. SuperLU DIST: A scalable distributed-memory sparse
direct solver for unsymmetric linear systems. ACM Trans. Mathematical Software, 29(2):110–
140, June 2003.

[32] Robert Lucas. Private communication (rflucas@lbl.gov), 2015.

[33] Esmond G. Ng and Barry W. Peyton. Block sparse Cholesky algorithms on advanced unipro-
cessor computers. SIAM J. Sci. Comput., 14(5):1034–1056, September 1993. (egng@lbl.gov).

[34] J. Poulson, B. Engquist, S. Li and L. Ying. A Parallel Sweeping Preconditioner for Heteroge-
neous 3D Helmholtz Equations. SIAM J. Sci. Comput., 35(3), C194-C212, 2013.

[35] E. Rothberg. Exploiting the memory hierarchy in sequential and parallel sparse Cholesky
factorization. PhD thesis, Dept. of Computer Science, Stanford University, December 1992.

[36] O. Schenk, K. Gärtner, and W. Fichtner. Efficient sparse LU factorization with left–right
looking strategy on shared memory multiprocessors. BIT, 40(1):158–176, 2000.

[37] J.P. Singh, W-D. Webber, and A. Gupta. Splash: Stanford parallel applications for shared-
memory. Computer Architecture News, 20(1):5–44, 1992. (http://www-flash.stanford.edu/
apps/SPLASH).

[38] M. Jacquelin and E. Ng. Solver for sparse symmetric matrices, Lawrence Berkeley National
Laboratory. (http://www.sympack.org).

[39] Z. Zlatev, J. Waśniewski, P. C. Hansen, and Tz. Ostromsky. PARASPAR: a package for
the solution of large linear algebraic equations on parallel computers with shared memory.
Technical Report 95-10, Technical University of Denmark, September 1995.

5


